Forwarding-Loop Attacks in Content Delivery Networks

نویسندگان

  • Jianjun Chen
  • Xiaofeng Zheng
  • Hai-Xin Duan
  • Jinjin Liang
  • Jian Jiang
  • Kang Li
  • Tao Wan
  • Vern Paxson
چکیده

We describe how malicious customers can attack the availability of Content Delivery Networks (CDNs) by creating forwarding loops inside one CDN or across multiple CDNs. Such forwarding loops cause one request to be processed repeatedly or even indefinitely, resulting in undesired resource consumption and potential Denial-of-Service attacks. To evaluate the practicality of such forwarding-loop attacks, we examined 16 popular CDN providers and found all of them are vulnerable to some form of such attacks. While some CDNs appear to be aware of this threat and have adopted specific forwarding-loop detection mechanisms, we discovered that they can all be bypassed with new attack techniques. Although conceptually simple, a comprehensive defense requires collaboration among all CDNs. Given that hurdle, we also discuss other mitigations that individual CDN can implement immediately. At a higher level, our work underscores the hazards that can arise when a networked system provides users with control over forwarding, particularly in a context that lacks a single point of administrative control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Intrusion Detection System to deal with Black Hole Attacks in Mobile Ad Hoc Networks

By extending wireless networks and because of their different nature, some attacks appear in these networks which did not exist in wired networks. Security is a serious challenge for actual implementation in wireless networks. Due to lack of the fixed infrastructure and also because of security holes in routing protocols in mobile ad hoc networks, these networks are not protected against attack...

متن کامل

Design an Efficient Community-based Message Forwarding Method in Mobile Social Networks

Mobile social networks (MSNs) are a special type of Delay tolerant networks (DTNs) in which mobile devices communicate opportunistically to each other. One of the most challenging issues in Mobile Social Networks (MSNs) is to design an efficient message forwarding scheme that has a high performance in terms of delivery ratio, latency and communication cost. There are two different approaches fo...

متن کامل

Energy-Aware Probabilistic Epidemic Forwarding Method in Heterogeneous Delay Tolerant Networks

Due to the increasing use of wireless communications, infrastructure-less networks such as Delay Tolerant Networks (DTNs) should be highly considered. DTN is most suitable where there is an intermittent connection between communicating nodes such as wireless mobile ad hoc network nodes. In general, a message sending node in DTN copies the message and transmits it to nodes which it encounters. A...

متن کامل

A Secure Routing Algorithm for Underwater Wireless Sensor Networks

Recently, underwater Wireless Sensor Networks (UWSNs) attracted the interest of many researchers and the past three decades have held the rapid progress of underwater acoustic communication. One of the major problems in UWSNs is how to transfer data from the mobile node to the base stations and choosing the optimized route for data transmission. Secure routing in UWSNs is necessary for packet d...

متن کامل

An On-Demand Byzantine-Resilient Secure Routing Protocol for Wireless Adhoc Networks

Security has become a primary concern in order to provide protected communication between mobile nodes in a hostile environment. We refer to any arbitrary action by authenticated nodes resulting in disruption of the routing service such as drop packets, modify packets and miss-route packets as Byzantine behavior, and to such an adversary as a Byzantine adversary. Nodes may exhibit Byzantine beh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016